Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Reprod Fertil ; 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36346793

RESUMO

Polycystic ovary syndrome (PCOS) is an endocrine metabolic disorder that appears to have a genetic predisposition and a fetal origin. The fetal ovary has two major somatic cell types shown previously to be of different cellular origins, different morphologies and to differentially express 15 genes. We isolated the somatic gonadal ridge epithelial-like (GREL) cells (n = 7) and ovarian fetal fibroblasts (n = 6) by clonal expansion. Using qRT-PCR, we compared the gene expression levels of PCOS candidate genes with previous data on the expression levels in whole fetal ovaries across gestation. We also compared these levels with those in bovine adult ovarian cells including fibroblasts (n = 4), granulosa cells (n = 5) and surface epithelial cells (n = 5). Adult cell types exhibited clear differences in the expression of most genes. In fetal ovarian cells, DENND1A and ERBB3 had significantly higher expression in GREL cells. HMGA2 and TGFB1I1 tended to have higher expression in fetal fibroblasts than GREL cells. Another 19 genes did not exhibit differences between GREL cells and fetal fibroblasts and FBN3, FSHB, LHCGR, FSHR and ZBTB16 were very lowly expressed in GREL cells and fibroblasts. The culture of fetal fibroblasts in EGF-containing medium resulted in lower expression of NEIL2, but higher expression of MAPRE1 compared to culture in the absence of EGF. Thus, the two fetal ovarian somatic cell types mostly lacked differential expression of PCOS candidate genes.

2.
PLoS One ; 17(7): e0268467, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35802560

RESUMO

During ovarian development, gonadal ridge epithelial-like (GREL) cells arise from the epithelial cells of the ventral surface of the mesonephros. They ultimately develop into follicular granulosa cells or into ovarian surface epithelial cells. Stromal fibroblasts arise from the mesonephros and penetrate the ovary. We developed methods for isolating and culturing fetal ovarian GREL cells and ovarian fibroblasts by expansion of colonies without passage. In culture, these two cell types were morphologically different. We examined the expression profile of 34 genes by qRT-PCR, of which 24 genes had previously been studied in whole fetal ovaries. Expression of nine of the 10 newly-examined genes in fetal ovaries correlated with gestational age (MUC1, PKP2, CCNE1 and CCNE2 negatively; STAR, COL4A1, GJA1, LAMB2 and HSD17B1 positively). Comparison between GREL cells and fetal fibroblasts revealed higher expression of KRT19, PKP2, OCLN, MUC1, ESR1 and LGR5 and lower expression of GJA1, FOXL2, NR2F2, FBN1, COL1A1, NR5A1, CCND2, CCNE1 and ALDH1A1. Expression of CCND2, CCNE1, CCNE2, ESR2 and TGFBR1 was higher in the fetal fibroblasts than in adult fibroblasts; FBN1 was lower. Expression of OCLN, MUC1, LAMB2, NR5A1, ESR1, ESR2, and TGFBR3 was lower in GREL cells than ovarian surface epithelial cells. Expression of KRT19, DSG2, PKP2, OCLN, MUC1, FBN1, COL1A1, COL3A1, STAR and TGFBR2 was higher and GJA1, CTNNB1, LAMB2, NR5A1, CYP11A1, HSD3B1, CYP19A1, HSD17B1, FOXL2, ESR1, ESR2, TGFBR3 and CCND2 was lower in GREL cells compared to granulosa cells. TGFß1 altered the expression of COL1A1, COL3A1 and FBN1 in fetal fibroblasts and epidermal growth factor altered the expression of FBN1 and COL1A1. In summary, the two major somatic cell types of the developing ovary have distinct gene expression profiles. They, especially GREL cells, also differ from the cells they ultimately differentiate in to. The regulation of cell fate determination, particularly of the bi-potential GREL cells, remains to be elucidated.


Assuntos
Células da Granulosa , Mesonefro , Animais , Bovinos , Células Epiteliais , Feminino , Fibroblastos/metabolismo , Células da Granulosa/metabolismo , Ovário/metabolismo
3.
Hum Reprod ; 37(6): 1244-1254, 2022 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-35413103

RESUMO

STUDY QUESTION: Could changes in transforming growth factor ß (TGFß) signalling during foetal ovary development alter the expression of polycystic ovary syndrome (PCOS) candidate genes leading to a predisposition to PCOS? SUMMARY ANSWER: TGFß signalling molecules are dynamically expressed during foetal ovary development and TGFß1 inhibits expression of the androgen receptor (AR) and 7 (INSR, C8H9orf3, RAD50, ERBB3, NEIL2, IRF1 and ZBTB16) of the 25 PCOS candidate genes in foetal ovarian fibroblasts in vitro, whilst increasing expression of the AR cofactor TGFß-induced transcript 1 (TGFB1I1 or Hic5). WHAT IS KNOWN ALREADY: The ovarian stroma arises from the mesonephros during foetal ovary development. Changes in the morphology of the ovarian stroma are cardinal features of PCOS. The ovary is more fibrous and has more tunica and cortical and subcortical stroma. It is not known why this is and when this arises. PCOS has a foetal origin and perhaps ovarian stroma development is altered during foetal life to determine the formation of a polycystic ovary later in life. PCOS also has a genetic origin with 19 loci containing 25 PCOS candidate genes. In many adult tissues, TGFß is known to stimulate fibroblast replication and collagen deposition in stroma, though it has the opposite effect in the non-scaring foetal tissues. Our previous studies showed that TGFß signalling molecules [TGFßs and their receptors, latent TGFß binding proteins (LTBPs) and fibrillins, which are extracellular matrix proteins that bind LTBPs] are expressed in foetal ovaries. Also, we previously showed that TGFß1 inhibited expression of AR and 3 PCOS candidate genes (INSR, C8H9orf3 and RAD50) and stimulated expression of TGFB1I1 in cultured foetal ovarian fibroblasts. STUDY DESIGN, SIZE, DURATION: We used Bos taurus for this study as we can ethically collect foetal ovaries from across the full 9-month gestational period. Foetal ovaries (62-276 days, n = 19) from across gestation were collected from pregnant B. taurus cows for RNA-sequencing (RNA-seq) analyses. Foetal ovaries from B. taurus cows were collected (160-198 days, n = 6) for culture of ovarian fibroblasts. PARTICIPANTS/MATERIALS, SETTING, METHODS: RNA-seq transcriptome profiling was performed on foetal ovaries and the data on genes involved in TGFß signalling were extracted. Cells were dispersed from foetal ovaries and fibroblasts cultured and treated with TGFß1. The effects of TGFß regulation on the remaining eight PCOS candidate genes not previously studied (ERBB3, MAPRE1, FDFT1, NEIL2, ARL14EP, PLGRKT, IRF1 and ZBTB16) were examined. MAIN RESULTS AND THE ROLE OF CHANCE: Many TGFß signalling molecules are expressed in the foetal ovary, and for most, their expression levels increased accross gestation (LTBP1/2/3/4, FBN1, TGFB2/3, TGFBR2/3 and TGFB1I1), while a few decreased (FBN3, TGFBR3L, TGFBI and TGFB1) and others remained relatively constant (TGFBRAP1, TGFBR1 and FBN2). TGFß1 significantly decreased expression of PCOS candidate genes ERBB3, NEIL2, IRF1 and ZBTB16 in cultured foetal ovarian fibroblasts. LARGE SCALE DATA: The FASTQ files, normalized data and experimental information have been deposited in the Gene Expression Omnibus (GEO) accessible by accession number GSE178450. LIMITATIONS, REASONS FOR CAUTION: Regulation of PCOS candidate genes by TGFß was carried out in vitro and further studies in vivo are required. This study was carried out in bovine where foetal ovaries from across all of the 9-month gestational period were available, unlike in the human where it is not ethically possible to obtain ovaries from the second half of gestation. WIDER IMPLICATIONS OF THE FINDINGS: From our current and previous results we speculate that inhibition of TGFß signalling in the foetal ovary is likely to (i) increase androgen sensitivity by enhancing expression of AR, (ii) increase stromal activity by stimulating expression of COL1A1 and COL3A1 and (iii) increase the expression of 7 of the 25 PCOS candidate genes. Thus inhibition of TGFß signalling could be part of the aetiology of PCOS or at least the aetiology of polycystic ovaries. STUDY FUNDING/COMPETING INTEREST(S): Funding was received from Adelaide University China Fee Scholarship (M.L.), Australian Research Training Program (R.A.) and the Faculty of Health and Medical Science Divisional Scholarship (R.A.), Adelaide Graduate Research Scholarships (R.A. and N.A.B.), Australia Awards Scholarship (M.D.H.), Robinson Research Institute Career Development Fellowship (K.H.) and Building On Ideas Grant (K.H.), National Health and Medical Research Council of Australia Centre for Research Excellence in the Evaluation, Management and Health Care Needs of Polycystic Ovary Syndrome (N.A.B., M.D.H. and R.J.R.; GTN1078444) and the Centre for Research Excellence on Women's Health in Reproductive life (R.A., R.J.R. and K.H.; GTN1171592) and the UK Medical Research Council (R.A.A.; grant no. G1100357). The funders did not play any role in the study design, data collection and analysis, decision to publish or preparation of the manuscript. The authors of this manuscript have nothing to declare and no conflict of interest that could be perceived as prejudicing the impartiality of the research reported.


Assuntos
Síndrome do Ovário Policístico , Animais , Austrália , Bovinos , Feminino , Feto , Humanos , Síndrome do Ovário Policístico/genética , Síndrome do Ovário Policístico/metabolismo , Gravidez , Fator de Crescimento Transformador beta
4.
Biol Reprod ; 103(4): 840-853, 2020 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-32678441

RESUMO

Polycystic ovary syndrome (PCOS) appears to have a genetic predisposition and a fetal origin. We compared the expression levels of 25 PCOS candidate genes from adult control and PCOS human ovaries (n = 16) using microarrays. Only one gene was potentially statistically different. Using qRT-PCR, expression of PCOS candidate genes was examined in bovine fetal ovaries from early stages when they first developed stroma through to completion of development (n = 27; 60-270 days of gestation). The levels of ERBB3 mRNA negatively correlated with gestational age but positively with HMGA2, FBN3, TOX3, GATA4, and DENND1A.X1,2,3,4, previously identified as correlated with each other and expressed early. PLGRKT and ZBTB16, and less so IRF1, were also correlated with AMH, FSHR, AR, INSR, and TGFB1I1, previously identified as correlated with each other and expressed late. ARL14EP, FDFT1, NEIL2, and MAPRE1 were expressed across gestation and not correlated with gestational age as shown previously for THADA, ERBB4, RAD50, C8H9orf3, YAP1, RAB5B, SUOX, and KRR1. LHCGR, because of its unusual bimodal expression pattern, had some unusual correlations with other genes. In human ovaries (n = 15; <150 days of gestation), ERBB3.V1 and ERBB3.VS were expressed and correlated negatively with gestational age and positively with FBN3, HMGA2, DENND1A.V1,3,4, DENND1A.V1-7, GATA4, and FSHR, previously identified as correlated with each other and expressed early. Thus, the general lack of differential expression of candidate genes in adult ovaries contrasting with dynamic patterns of gene expression in fetal ovaries is consistent with a vulnerability to disturbance in the fetal ovary that may underpin development of PCOS.


Assuntos
Feto/metabolismo , Ovário/metabolismo , Síndrome do Ovário Policístico/metabolismo , Animais , Bovinos , Feminino , Regulação da Expressão Gênica , Predisposição Genética para Doença , Humanos , Análise Serial de Proteínas
5.
PLoS One ; 15(2): e0229351, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32078641

RESUMO

Polycystic ovary syndrome (PCOS) affects around 10% of young women, with adverse consequences on fertility and cardiometabolic outcomes. PCOS appears to result from a genetic predisposition interacting with developmental events during fetal or perinatal life. We hypothesised that PCOS candidate genes might be expressed in the fetal ovary when the stroma develops; mechanistically linking the genetics, fetal origins and adult ovarian phenotype of PCOS. In bovine fetal ovaries (n = 37) of 18 PCOS candidate genes only SUMO1P1 was not expressed. Three patterns of expression were observed: early gestation (FBN3, GATA4, HMGA2, TOX3, DENND1A, LHCGR and FSHB), late gestation (INSR, FSHR, and LHCGR) and throughout gestation (THADA, ERBB4, RAD50, C8H9orf3, YAP1, RAB5B, SUOX and KRR1). A splice variant of FSHB exon 3 was also detected early in the bovine ovaries, but exon 2 was not detected. Three other genes, likely to be related to the PCOS aetiology (AMH, AR and TGFB1I1), were also expressed late in gestation. Significantly within each of the three gene groups, the mRNA levels of many genes were highly correlated with each other, despite, in some instances, being expressed in different cell types. TGFß is a well-known stimulator of stromal cell replication and collagen synthesis and TGFß treatment of cultured fetal ovarian stromal cells inhibited the expression of INSR, AR, C8H9orf3 and RAD50 and stimulated the expression of TGFB1I1. In human ovaries (n = 15, < 150 days gestation) many of the same genes as in bovine (FBN3, GATA4, HMGA2, FSHR, DENND1A and LHCGR but not TOX3 or FSHB) were expressed and correlated with each other. With so many relationships between PCOS candidate genes during development of the fetal ovary, including TGFß and androgen signalling, we suggest that future studies should determine if perturbations of these genes in the fetal ovary can lead to PCOS in later life.


Assuntos
Biomarcadores/análise , Desenvolvimento Fetal/genética , Regulação da Expressão Gênica no Desenvolvimento , Ovário/patologia , Síndrome do Ovário Policístico/patologia , Polimorfismo de Nucleotídeo Único , Adulto , Animais , Bovinos , Feminino , Genes Reguladores , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Genótipo , Humanos , Ovário/metabolismo , Síndrome do Ovário Policístico/genética , Gravidez , Células Estromais/metabolismo , Células Estromais/patologia
6.
Chest ; 157(5): 1362-1390, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32006591

RESUMO

Smoking continues to be a burden to economies and health-care systems across the world. One proposed solution to the problem has been e-cigarettes; however, because they are a relatively new product in the market, little is known about their potential health impacts. Furthermore, e-cigarettes continue to evolve at a rapid rate, making it necessary to regularly review and summarize available studies. Although e-cigarettes are marketed as a smoking cessation tool by some manufacturers, the reality is that many nonsmokers, including youth, are using them. This review focuses on two major demographic groups (smokers and nonsmokers) and evaluates the most recent data (early 2017 to mid 2019) regarding the potential health effects of e-cigarettes. We assessed peer-reviewed studies on the health impacts of e-cigarettes, with a particular focus on common questions asked by policy makers, clinicians, and scientists: (1) What are the effects of e-cigarettes compared with air/not smoking?; (2) Is there any direct evidence of harm or benefit to humans?; (3) Is there a risk from secondhand exposure?; (4) What are the risks and/or benefits of e-cigarettes compared with tobacco cigarette use?; (5) Are there risks or benefits to specific populations (eg, people with COPD or asthma, pregnant women [and their offspring])?; (6) What are the effects of flavoring chemicals?; (7) What are the effects of including nicotine in e-liquids?; (8) How often is nicotine concentration labeling incorrect?; and (9) What are the risks when e-cigarettes explode?


Assuntos
Qualidade de Produtos para o Consumidor , Sistemas Eletrônicos de Liberação de Nicotina , Abandono do Hábito de Fumar/métodos , Vapor do Cigarro Eletrônico/efeitos adversos , Medicina Baseada em Evidências , Explosões , Humanos , Rotulagem de Produtos , Fatores de Risco
7.
J Histochem Cytochem ; 68(2): 113-126, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31855103

RESUMO

When first formed, the ovary only has an established epithelium at its base or hilum. Later, an epithelium is established around the rest of the ovary. To examine this further, we conducted scanning electron microscopy of the surface of bovine fetal ovaries and immunohistochemistry of ovarian cross-sections. From the earliest time point, the cells on the surface of the base or hilum of the ovary were cuboidal. On the remainder of the ovary, the surface was more irregular. By mid-development, the surface was covered completely with either a stratified or simple epithelium of cuboidal cells. Clefts were observed in the surface and appeared to form due to the expansion of stroma surrounding each open ovigerous cord, elevating the areas surrounding each cord, while leaving the opening of the cord to form the base of each cleft. The continued expansion of the surrounding stroma below the surface appeared not only to close the ovigerous cords from the surface but to compress the clefts into the shape of a groove. Later, most of the ovarian surface was covered with a simple cuboidal epithelium. The changes to the ovarian surface during fetal development coincide with the remodeling of the stroma and cords below.


Assuntos
Epitélio/metabolismo , Desenvolvimento Fetal , Ovário/citologia , Animais , Bovinos , Feminino , Imuno-Histoquímica , Ovário/metabolismo
8.
Reproduction ; 152(2): 127-37, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27222596

RESUMO

Fibrillins 1-3 are stromal extracellular matrix proteins that play important roles in regulating TGFß activity, which stimulates fibroblasts to proliferate and synthesize collagen. In the developing ovary, the action of stroma is initially necessary for the formation of ovigerous cords and subsequently for the formation of follicles and the surface epithelium of the ovary. FBN3 is highly expressed only in early ovarian development and then it declines. In contrast, FBN1 and 2 are upregulated in later ovarian development. We examined the expression of FBN1-3 in bovine and human fetal ovaries. We used cell dispersion and monolayer culture, cell passaging and tissue culture. Cells were treated with growth factors, hormones or inhibitors to assess the regulation of expression of FBN1-3 When bovine fetal ovarian tissue was cultured, FBN3 expression declined significantly. Treatment with TGFß-1 increased FBN1 and FBN2 expression in bovine fibroblasts, but did not affect FBN3 expression. Additionally, in cultures of human fetal ovarian fibroblasts (9-17weeks gestational age), the expression of FBN1 and FBN2 increased with passage, whereas FBN3 dramatically decreased. Treatment with activin A and a TGFß family signaling inhibitor, SB431542, differentially regulated the expression of a range of modulators of TGFß signaling and of other growth factors in cultured human fetal ovarian fibroblasts suggesting that TGFß signaling is differentially involved in the regulation of ovarian fibroblasts. Additionally, since the changes in FBN1-3 expression that occur in vitro are those that occur with increasing gestational age in vivo, we suggest that the fetal ovarian fibroblasts mature in vitro.


Assuntos
Ativinas/metabolismo , Feto/metabolismo , Fibrilinas/metabolismo , Regulação da Expressão Gênica , Ovário/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Animais , Bovinos , Células Cultivadas , Feminino , Feto/citologia , Fibrilina-1/metabolismo , Fibrilina-2/metabolismo , Fibroblastos/citologia , Fibroblastos/metabolismo , Humanos , Ovário/citologia , Gravidez
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...